REACH-CLP-OSH 2024

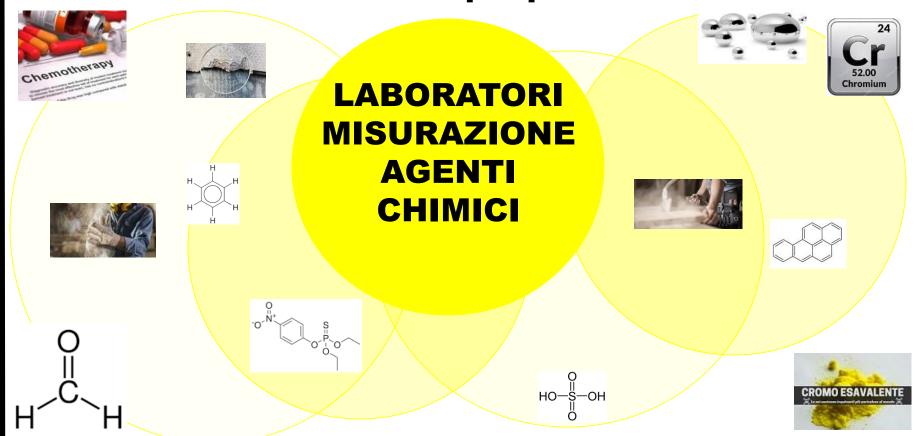
LE SOSTANZE CMR IN SICUREZZA CHIMICA

Agenti Cancerogeni, Mutageni, tossici per la Riproduzione e che destano molta preoccupazione per la salute

Bologna, 21 novembre 2024

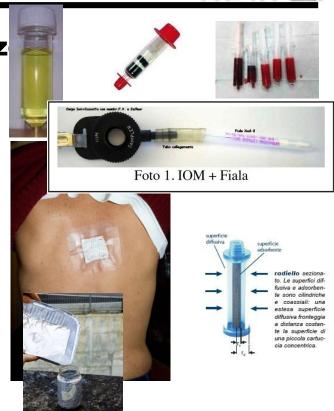
Agenti chimici e Igiene Occupazionale: le criticità nella scelta e nella gestione dei metodi di prova

M.C. Aprea, M. Raffaelli Laboratorio di Sanità Pubblica, Siena Azienda USL Toscana sud est



REACH-CLP-OSH 2024

IGIENE OCCUPAZIONALE


- Identificazione agenti pericolosi
- Valutazione entità del rischio dovuto all'esposizione
 - Controllo dei rischi per prevenire malattie

LABORATORI MISURAZIONE AGENTI CHIMICI

- Numerosità e diversità delle sostanz da determinare
 - classi di appartenenza
 - caratteristiche chimico-fisiche
- Vasta gamma di "matrici"
 - valutazione esposizione inalatoria
 - valutazione esposizione cutanea
 - monitoraggio biologico
- Vasta tipologia di metodi
 - la caratterizzazione di una sola sostanza può comportare metodi di prova diversi per eseguire un'indagine completa
 - raramente sono disponibili metodi normalizzati adeguati
 - messi a punto o modificati dal LAB

UTENZA vs LABORATORISTI vs COSTI

 Rendere disponibile all'utenza un ampio repertorio di metodi;

- l'attività analitica si deve svolgere garantendo per il LAB la rispondenza alle norme in materia di igiene del lavoro mediante individuazione, valutazione e controllo dei fattori di rischio derivanti dal processo
 - elemento di forte criticità è il numero di sostanze pericolose impiegate, tra le quali destano particolare attenzione quelle dotate di tossicità cronica, ma anche i composti utilizzati in condizioni dispersive;
- l'attività non routinaria (applicazione non continuativa) determina una aumento dei costi/campione per
 - acquisto e mantenimento in efficienza della strumentazione analitica e ausiliaria
 - garantire la disponibilità di tutti i reattivi
 - fornire risultati con caratteristiche metrologiche adeguate

CONOSCENZE DEL PERSONALE

- attività mette il personale sempre di fronte a nuove problematiche da risolvere e ad un continuo studio
 - ASPETTI ANALITICI
 - ·Strumentazione.
 - Preparazione del campione.
 - Controllo delle prestazioni dei metodi.
 - ·Normativa accreditamento.
 - Problem setting.
 - ·Problem solving.
 - •Manutenzione strumenti.
 - Acquisti di materiali e reattivi.

- NORMATIVA DI SETTORE
 - · Indirizzare l'utenza.
 - Indirizzare scelte riguardanti i requisiti prestazionali dei metodi.
 - Modalità di confronto con gli standard.

- PRINCIPALI CICLI PRODUTTIVI AZIENDALI
 - Liberazione di sostanze durante la produzione

I METODI DI PROVA

INTERNI

- messi a punto o adottati dal LAB sulla base di conoscenze desunte dalla letteratura scientifica e/o dall'esperienza pratica;
 - -responsabilità dei dati riferita ai singoli autori e non all'organizzazione che lo ha emesso

UFFICIALI

- riportati o
 richiamati in
 documenti cogenti
 e/o pubblicati su
 GUI o dell'UE
- quando il metodo normalizzato è anche un metodo ufficiale, è riconosciuto idoneo a dare una conformità legislativa.

NORMALIZZATI

- approvati da
 organismi di
 normazione
 nazionali, europei o
 internazionali (UNI,
 CEI, CEN, ISO,
 UNICHIM, ASTM,
 AOAC)
- approvati da organismi pubblici autorevoli (USDA, FDA, EPA, NIOSH, IUPAC, APHA, OIV, OIE, WHO, APAT, CNR, IRSA, ISPRA, NMKL...)

LE SCELTE DEL LABORATORIO

Richieste dei clienti (presupposto immediato utilizzo)

Ampliare l'offerta

METODO DI PROVA

- IMPLEMENTARNE UNO NUOVO
 - MODIFICARNE UNO IN USO
 - DISMETTERNE UNO IN USO

Disponibilità di nuovi strumenti

FASI DI IMPLEMENTAZIONE DI UN NUOVO METODO

STEP 1

- Esame della richiesta
 - identificare esigenze da soddisfare;
 - analizzare la reale assenza di metodi normalizzati da utilizzare o adattare;
 - valutare la necessità sviluppare un metodo interno;
 - identificare il numero di campioni ipotizzabili su base annuale e per quali clienti (istituzionali o privati a pagamento);
 - identificare il contesto legislativo nazionale ed internazionale di riferimento.

STEP 2

- Analisi di dettaglio del servizio da proporre
 - Riguarda l'intera attività del LAB
 - Pianificazione (aspetti tecnici e di uso delle risorse)
 - formulazione degli obiettivi relativi al miglioramento delle prestazioni;
 - individuazione di clienti destinatari;
 - stima del volume delle potenziali richieste.

DISMETTERE O MODIFICARE UN METODO

Scarsa richiesta

Stare al passo con i tempi

Continua evoluzione

Miglioramento

CONOSCENZE TOSSICOLOGICHE

- "sostituzione" per esporre i lavoratori a sostanze con minor tossicità intrinseca
 - per Cr^{VI} e Tricloroetilene, uso autorizzato da ECHA, mentre la liberazione a valle può derivare dal ciclo produttivo dell'Azienda stessa
- Scelte delle Aziende
 - sostituzione con sostanze strutturalmente e tossicologicamente simili ma meno note (BPA-->BPS)

METODI MULTIANALITA

UTILIZZO DI PANNELLI FISSI

• IPA (19 COMPOSTI)

IPA

RICHIESTA DEL CLIENTE

- Metalli (circa 15) metalli
- Chemioterapici CA
- Fitofarmaci
 Fito

UTILIZZO DI PANNELLI VARIABILI

COV (centinaia di sostanze analizzabili)

COV

METODI MULTIANALITA ---->FLESSIBILITA'

UTILIZZO DI PANNELLI VARIABILI

- COV (centinaia di sostanze analizzabili)
- COV
- Taratura mirata sulla base della richiesta
- Il laboratorio individua il pannello più adeguato in base a:
 - conoscenze sul settore aziendale dal quale proviene il campione (nelle pelletterie venivano di solito determinate le molecole componenti dell'esano tecnico, mentre oggi le miscele impiegate corrispondono all'eptano tecnico);
 - traccianti individuati dalle schede di dati di sicurezza dei prodotti impiegati;
 - facendo una scansione GC-MS dell'estratto ottenuto dal campione per individuare gli analiti più rappresentativi che poi saranno analizzati quantitativamente con tecniche SIM (monitoraggio del singolo ione)

INCERTEZZA DI MISURA E REGOLE DECISIONALI

- Il laboratorio deve fornire al cliente l'incertezza di misura "U" per valutare la conformità a un VLEP
 - D.Lgs.81/2008 e ss.mm.ii. (VLB e VLEP)
 - D.M.06/09/1994 (restituibilità di ambienti dopo bonifica per l'amianto aerodisperso)
 - D.Lgs.101/2020 (Radon)
- UNI EN ISO 689:2019
 - la valutazione di conformità non può essere eseguita sulla base di una singola misura a meno che questa non superi il VLEP
 - il Laboratorio deve adottare una regola decisionale da comunicare al Cliente
 - campione non conforme quando il risultato supera il VLEP tenendo conto di U, stimata ad un livello di confidenza del 97,5% (rischio inferiore al 2,5% per la probabilità di falsa accettazione e falso rifiuto).
 - U analitica stimata dal Laboratorio dovrebbe essere computata con l'incertezza di campionamento non sempre disponibile e/o comunicata.

AMPIA OFFERTA DI METODI DI PROVA

Classi di sostanze/matrice

- Acidi/aria;
- Aldeidi/aria;
- Gas tossici/aria;
- Ammoniaca/aria;
- Isocianati/aria, matrici biologiche;
- COV (idrocarburi alifatici, cicloalifatici, aromatici, clorurati, solforati, azotati, alcoli, eteri, esteri, ammidi, etc.)/aria, matrici biologiche;
- Anestetici/aria, matrici biologiche;
- Farmaci/aria, wipe test, pad, matrici biologiche;
- IPA/aria, wipe test, pad, lavaggi mani, matrici biologiche;

Classi di sostanze/matrice

- metalli (metodi multielementari)/aria, matrici biologiche;
- metalli da analizzare singolarmente (Cr^{VI}, Hg)/ aria, matrici biologiche;
- Pesticidi/aria, wipe test, pad, lavaggi mani, matrici biologiche;
- · Polveri/aria;
- Silice libera cristallina respirabile/aria;
- Fibre
 - varie forme di asbesto/aria e materiali
 - fibre artificiali vetrose/aria

CRITICITA' NELLA GESTIONE

ASPETTI SALIENTI

- numero di metodi di prova da eseguire in tempi ragionevoli;
- numero di reattivi sempre presenti;
- numero di MRC sempre presenti per analiti da determinare routinariamente e per standard interni;
- numero di materiali per la preparazione dei campioni (colonnine SPE, colonne cromatografiche, provette specifiche, etc.);
- strumentazione ausiliaria e di protezione collettiva in perfetta efficienza e tarata (bilance, stufe, forni a microonde, sistemi di estrazione, sistemi di concentrazione, agitatori, termometri, bagni termostatici, cappe chimiche, cappe a flusso laminare);
- strumentazione analitica sempre efficiente e sotto costante manutenzione (HPLC-DAD, HPLC-FLD, Cromatografo ionico, HPLC-MS, GC-MS, AAS, ICP-MS, Spettrofotometri UV-fluorescenza, Bilance, DRX, MOCF, SEM, analizzatori in continuo).

CRITICITA' NELLA GESTIONE

PERSONALE

- utilizzare al meglio la strumentazione
 - conoscenze specifiche e di alto livello
 - pronto ad intervenire con cambi di impostazione, colonne cromatografiche, modalità di funzionamento
- preparazione del campione, spesso lunga e articolata
 - richiede buona preparazione
 - incrementa la complessità dell'analisi
- aggiornare continuamente le metodiche aggiungendone alcune e togliendone altre dalla routine
- attività svolta non paragonabile in alcun modo con un Laboratorio di analisi Chimico-Cliniche
 - opera con Kit preconfezionati che trovano applicazione su larga scala e vengono usati anche per applicazioni eseguite anche sulla strumentazione complessa

CRITICITA' NELLA GESTIONE

ALTRO

- controllo esterno di qualità
 - le Ditte produttrici di Proficiency Testing valutano economicamente non vantaggiosa la messa in commercio delle tipologie di campioni necessari per il processo di validazione dei metodi a causa della bassa commerciabilità (scarsa diffusione di Laboratori di Igiene Occupazionale)

- intermittenza di esecuzione dei metodi di prova contribuisce ad elevare il costo analitico
 - analisi richieste in maniera non continuativa se non nell'ambito di campagne prestabilite
- richiesta anche in ambienti di vita indoor
 - si passa da situazioni di esposizione consistenti a situazioni di bassissima esposizione in cui le tarature strumentali devono essere completamente rifatte per calcolare al meglio i livelli di concentrazione

CRITICITA' PER LA SICUREZZA del LAB

Collocazione locali

Dotazioni tecniche

DPI

ESPOSIZIONE AD AGENTI CHIMICI

- utilizzata una moltitudine di sostanze
 - caratteristiche tossicologiche più disparate
 - quantità molto piccole
 - tempi d'esposizione brevi
- liberazione in aria
- contaminazione cutanea
- contaminazione superficiale
 - esposizione cutanea degli operatori
 - diffusione degli inquinanti con vari processi di trasporto di massa

Struttura laboratorio

LOCALI E DOTAZIONI TECNICHE - PERICOLI

Reagentario

- Incompatibilità tra composti
- Armadi aspirati
- Frigo, congelatori, armadi

Sala bilance

 Contaminazione superficiale della bilancia e delle superfici di appoggio

Decontaminazio ne e lavaggio vetreria

- residui di campioni
- acidi

Ricezione e stoccaggio campioni

- rischi connessi con la dispersione di matrici solide o liquide
- conservazione in refrigerazione, congelamento o a Ta quando non si prevedono degradazioni

Preparazione

- Esposizione alle sostanze chimiche
 - da analizzare e standard interni (tarature)
 - usate per trattamento campioni (solventi per isolamento analiti, derivatizzanti, acidi per distruzione matrice)
- Strumenti ausiliari
 - forni a MO
 - evaporatori
 - liofilizzatori
 - stufe
 - mulini
 - forni a muffola
 - bagni termostatici
 - centrifughe
- Cappe

LOCALI E DOTAZIONI TECNICHE - PERICOLI

Locali di collocazione della strumentazione analitica

- Separati per gruppo di tecniche in modo da gestire il pericolo
 - HPLC e LC/MS
 - Solventi organici (Normal Phase)
 - AAS, FIMS, OES, ICP/MS
 - Vapori acidi
 - Termo-decomposizione campioni analizzati
 - GC e GC/MS
 - Liberazione delle sostanze da determinare nel caso di detector non distruttivi
 - Liberazione di Sostanze derivanti dalla combustione o dal bombardamento nel caso di detector distruttivi
 - DRX, MOCF, SEM
 - Tecniche non distruttive

CONSIDERAZIONI CONCLUSIVE

ASPETTI PIU' RILEVANTI

- Personale difficile da reperire
 - disponibile a migliorare, modificare, implementare continuamente le sue conoscenze per far fronte all'evoluzione della materia
- Formazione
 - mentoring tra un soggetto con più esperienza e un allievo, in modo da trasmettere competenze insite nel mentore
 - alcune associazioni scientifiche riescono a mettere in atto programmi formativi adeguati soprattutto quando abbinano agli aspetti teorici la parte pratica condotta da senior con molta esperienza.

- Pianificazione attività
 - procedure
 operative
 standard da
 seguire in ogni
 passaggio
 - continua
 attenzione ed
 educazione al
 comportament
 o sicuro
 - buone pratiche in tutte le attività e nei processi di supporto

REACH-CLP-OSH 2024

LE SOSTANZE CMR IN SICUREZZA CHIMICA

Agenti Cancerogeni, Mutageni, tossici per la Riproduzione e che destano molta preoccupazione per la salute

Bologna, 21 novembre 2024

GRAZIE PER L'ATTENZIONE

M.C. Aprea, M. Raffaelli
0577 536664 - 536752
cristina.aprea@uslsudest.toscana.it
manila.raffaelli@uslsudest.toscana.it

Azienda USL Toscana sud est

